A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
نویسندگان
چکیده
A singularly perturbed reaction-diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using anisotropic meshes which can improve the accuracy of the discretization considerably. The main focus is on a posteriori error estimation. A residual type error estimator is proposed and rigorously analysed. It is shown to be robust with respect to the small perturbation parameter. The estimator is also robust with respect to the mesh anisotropy as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution (which is almost always the case for sensible discretizations). Altogether, reliable and efficient a posteriori error estimation is achieved for the finite volume method on anisotropic meshes. M. Afif Faculté des Sciences-Semlalia, Laboratoire LIBMA, Université Cadi Ayyad, B.P. 2390, Marrakech, Maroc e-mail: [email protected] B. Amaziane Laboratoire de Mathématiques et de leurs Applications, CNRS-UMR 5142, Université de Pau et des Pays de l’Adour, av. de l’Université, 64000 Pau, France e-mail: [email protected] G. Kunert IAV GmbH, 09120 Chemnitz, Germany e-mail: [email protected] Z. Mghazli Faculté des Sciences, Laboratoire LIRNE-Equipe EIMA, Université Ibn Tofaïl, B.P. 133, Kénitra, Maroc e-mail: [email protected] S. Nicaise ( ) LAMAV, FR CNRS 2956, Université Lille Nord de France, UVHC, 59313 Valenciennes Cedex 9, France e-mail: [email protected] 184 J Sci Comput (2010) 43: 183–200 Numerical experiments in 2D underline the applicability of the theoretical results in adaptive computations.
منابع مشابه
Sonderforschungsbereich 393 Parallele Numerische Simulation für Physik und Kontinuumsmechanik
A singularly perturbed reaction diffusion problem is considered. The small diffusion coefficient generically leads to solutions with boundary layers. The problem is discretized by a vertex-centered finite volume method. The anisotropy of the solution is reflected by using anisotropic meshes which can improve the accuracy of the discretization considerably. The main focus is on a posteriori erro...
متن کاملNumerical Study of an Anisotropic Error Estimator in the L(h) Norm for the Finite Element Discretization of the Wave Equation
Abstract. An anisotropic a posteriori error estimate is derived for a finite element discretization of the wave equation in two space dimensions. Only the error due to space discretization is considered and the error estimates are derived in the non natural L(0, T ;H(Ω)) norm using elliptic reconstruction. A numerical study of the effectivity index on unstructured, non adapted, anisotropic mesh...
متن کاملAn Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank-Nicolson Scheme
The time dependent transport equation is solved with stabilized continuous, piecewise linear finite elements and the Crank-Nicolson scheme [1]. Finite elements with large aspect ratio are advocated in order to account for boundary layers. The error due to space discretization has already been studied in [2]. Here, the error due to the use of the Crank-Nicolson scheme is taken into account. Anis...
متن کاملNumerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Construction and Error Estimation in the Nite Element Method Preprint-reihe Des Chemnitzer Sfb 393
In an anisotropic adaptive nite element algorithm one usually needs an error estimator that yields the error size but also the stretching directions and stretching ratios of the elements of a (quasi) optimal anisotropic mesh. However the last two ingredients can not be extracted from any of the known anisotropic a posteriori error estimators. Therefore a heuristic approach is pursued here, name...
متن کاملThe Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation
In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 43 شماره
صفحات -
تاریخ انتشار 2010